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Abstract. We study two approaches to replace a finite mathematical programming problem with
inequality constraints by a problem that contains only equality constraints. The first approach lifts the
feasible set into a high-dimensional space by the introduction of quadratic slack variables. We show
that then not only the number of critical points but also the topological complexity of the feasible
set grow exponentially. On the other hand, the second approach bases on an interior point technique
and lifts an approximation of the feasible set into a space with only one additional dimension. Here
only Karush–Kuhn–Tucker points with respect to the positive and negative objective function in the
original problem give rise to critical points of the smoothed problem, so that the number of critical
points as well as the topological complexity can at most double.
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1. Introduction

In this article we study optimization problems of the type

P : minimize f (x) subject to x ∈ M

where

M = {x ∈ R
n|hi(x) = 0, i ∈ I, gj (x) � 0, j ∈ J }

and where the defining functions f, hi , gj : R
n → R are C2-functions, |I | <

n, |J | < ∞.
The presence of inequality constraints in P does not only complicate the bound-

ary structure of its feasible set M, but it also constitutes a well-known challenge for
the design and performance of numerical solution methods for P . The aim of this
article is to study how P can be replaced by optimization problems without inequal-
ity constraints. In particular, we investigate an exact approach and an approximative
approach via smoothing, both of which “lift” the problem into a higher-dimensional
space. The complexity of the new problems is higher in the sense that the number
of critical points increases in comparison to the original problem. We show that
the number of critical points grows exponentially for the exact approach, whereas
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for the smoothing approach it doubles at most. Via Morse theory we also derive
corresponding results on the topological complexity of the lifted sets.

The article is organized as follows. In Section 2 we recall the notions of a critical
point, a Karush–Kuhn–Tucker point, a non-degenerate critical point, and of the
linear and quadratic indices. Section 3 treats the exact approach of introducing
quadratic slack variables. In Theorem 3.7 we show that then the number of critical
points grows exponentially in the number of inactive inequality constraints, and
Theorem 3.8 gives the relation between the occurring linear and active indices. By
means of an example Theorem 3.10 stresses that also the topological complexity of
the feasible set can grow exponentially. As opposed to these observations, Section 4
shows that the number of critical points of a logarithmically smoothed problem is
bounded by twice the number of Karush–Kuhn–Tucker points with respect to the
positive and negative objective function in the original problem (Theorem 4.4), and
that also the topological complexity does not change drastically (Theorem 4.5).

2. Basic notions

At a point x̄ ∈ M the linear independence constraint qualification (LICQ) is said to
hold, if the vectors Dhi(x̄), i ∈ I, Dgj(x̄), j ∈ J0(x̄), are linearly independent.
Here, DF stands for the row vector of partial derivatives of a real-valued function
F , and J0(x̄) = {j ∈ J | gj (x̄) = 0} denotes the set of active inequality constraints
at x̄ . Generically, LICQ holds at every point in M and, in this case, M is a (n −
|I |)-dimensional C2−manifold with boundary (cf. [3]).

A point x̄ ∈ M is called critical point for f |M if LICQ holds at x̄ and if there
exist real numbers (Lagrange multipliers) λ̄i , i ∈ I, µ̄j , j ∈ J0(x̄), such that

Df (x̄) =
∑
i∈I

λ̄i Dhi(x̄) +
∑

j∈J0(x̄)

µ̄j Dgj (x̄) .

A critical point is called Karush-Kuhn-Tucker point (KKT-point) if µ̄j � 0,

j ∈ J0(x̄). For an optimization problem P without inequality constraints, i.e.
J = ∅, the sets of critical points and of KKT-points obviously coincide.

A critical point is called non-degenerate if the following two conditions hold:

ND1: µ̄j �= 0, j ∈ J0(x̄) ,
ND2: D2L(x̄)|Tx̄M is non-singular .

The matrix D2L stands for the Hessian of the Lagrange function

L(x) = f (x) −
∑
i∈I

λ̄i hi(x) −
∑

j∈J0(x̄)

µ̄j gj (x) , (1)

and Tx̄M denotes the tangent space of M at x̄ ,

Tx̄M = { ξ ∈ R
n| Dhi(x̄) ξ = 0, i ∈ I, Dgj(x̄) ξ = 0, j ∈ J0(x̄) } .
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Condition ND2 means that V �D2L(x̄)V is non-singular, where V is some matrix
whose columns form a basis of the tangent space Tx̄M. The number of negat-
ive (positive) multipliers µ̄j in ND1 is called the linear index (LI) (linear co-
index (LCI)) of x̄. The number of negative (positive) eigenvalues of D2L(x̄)|Tx̄M

in ND2 is the quadratic index (QI) (quadratic co-index (QCI)) of x̄. In partic-
ular, a non-degenerate critical point is a KKT-point if and only if LI=0. In that
case the quadratic index coincides with the so-called Morse-index. Note that a
non-degenerate critical point is a local minimum (maximum) of P if and only if
LI=QI=0 (LCI=QCI=0). Generically, all critical points of an optimization problem
P are non-degenerate (cf. [3]).

3. An exact approach

The following approach to equalize inequality constraints by adding quadratic
slack variables is well-known (see, e.g., [6] and [7]). Consider the problem

P̃ : minimize f (x) subject to (x, z) ∈ M̃

where

M̃ = { (x, z) ∈ R
n × R

|J || hi(x) = 0, i ∈ I, gj (x) − z2
j = 0, j ∈ J } .

The following results are easily seen.

LEMMA 3.1. If LICQ holds at x̄ ∈ M, then LICQ holds at (x̄, z̄) ∈ M̃, where
z̄j = ±√

2gj (x̄) , j ∈ J .

COROLLARY 3.2. If LICQ holds at all x ∈ M, then M̃ is a C2−manifold with
dim M̃ = dim M.

LEMMA 3.3. M is compact if and only if M̃ is compact.

LEMMA 3.4. Let LICQ hold at x̄ ∈ M and put z̄j = ±√
2gj (x̄) , j ∈ J . Then

the tangent space to M̃ at (x̄, z̄) has the form

T(x̄,z̄)M̃ = { (ξ, η) ∈ Tx̄M × R
|J ||ηj ∈ R , j ∈ J0(x̄) ,

ηj = 1
z̄j

Dgj (x̄) ξ , j ∈ J \ J0(x̄) } .

From now on let the following assumption hold:

ASSUMPTION 3.5. LICQ holds at each point x ∈ M.

LEMMA 3.6. Let x̄ ∈ M be a critical point for f |M with Lagrange multipliers
λ̄i , i ∈ I, µ̄j , j ∈ J0(x̄). Then (x̄, z̄) with z̄j = ±√

2gj (x̄) , j ∈ J, is a critical
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point for f |M̃ (and hence KKT-point), i.e.


D�f (x̄)

0
...
...
...

0




=
∑
i∈I

λ̄i




D�hi(x̄)

0
...
...
...

0




+
∑
j∈J

µ̄j




D�gj (x̄)

0
...

−z̄j

...

0




,

where µ̄j = 0, j ∈ J \J0(x̄). On the other hand, if (x̄, z̄) a critical point for f |M̃ ,
then x̄ is a critical point for f |M , and J0(x̄) = {j ∈ J | z̄j = 0}.

As a consequence we obtain as our first main result that the number of critical
points of P̃ grows exponentially in the number of inactive constraints, compared
to the number of critical points of P .

THEOREM 3.7. To each critical point x̄ of f |M correspond exactly 2|J \J0(x̄)| crit-
ical points (and hence KKT-points) of f |M̃ .

In the next result we show how the linear and quadratic indices of non-degenerate
critical points of P and P̃ are related.

THEOREM 3.8. Let x̄ ∈ M be a non-degenerate critical point for f |M with
indices (LI,LCI,QI,QCI). Then (x̄, z̄) with z̄j = ±√

2gj (x̄) , j ∈ J, is a non-
degenerate critical point for f |M̃ with indices (0,0,LI+QI,LCI+QCI).

Proof. Let L denote the Lagrange function corresponding to the non-degenerate
critical point x̄ of f |M (cf. (1)), and let L̃ denote the Lagrange function corres-
ponding to the critical point (x̄, z̄) of f |M̃ , i.e.

L̃(x, z) = f (x) −
∑
i∈I

λ̄i hi(x) −
∑
j∈J

µ̄j (gj (x) − 1
2z

2
j )

with µ̄j = 0 for j ∈ J \ J0(x̄). The Hessian of L̃ possesses the block structure

D2L(x̄, z̄) =
(

D2L(x̄)

0

0

diag(µ̄j )

)
,

so that Lemma 3.4 implies that the restricted Hessian D2L̃(x̄, z̄)|T(x̄,z̄)M̃
has LI+QI

negative and LCI+QCI positive eigenvalues. �
REMARK 3.9. As a consequence of Theorem 3.8, the KKT-points of f |M̃ are not
only generated by the KKT-points of f |M and (−f )|M . In fact, all critical points
of f |M give rise to KKT-points for f |M̃ .

By means of an illustrative example let us now investigate in dimension 2 how the
Euler characteristic χ (cf. [3]) increases when M is lifted to M̃.
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THEOREM 3.10. Let M ⊂ R
2 be a two-dimensional polytope with p vertices

(p � 3), defined by p affine linear inequality constraints

0 � gj (x) = a�
j x − bj , j = 1, ..., p .

Then the corresponding Euler characteristics satisfy

χ(M) = 1 and χ(M̃) = (4 − p) 2p−2 .

REMARK 3.11. If p = 3 then M is a triangle, and M̃ is a two-dimensional sphere.
If p = 4, then M̃ is a torus. In general, the genus (cf. [1]) of the two-dimensional
manifold M̃ equals (p − 4) 2p−3 + 1.

Proof of Theorem 3.10. Choose c ∈ R
2 such that the function f (x) = c�x

has only non-degenerate critical points for M. Note that f |M has exactly one
minimum and one maximum, and that at the remaining p − 2 critical points it
is LI=LCI=1. From Theorem 3.8 it follows that f |M̃ has 2p−2 minima, 2p−2 max-
ima, and (p − 2) 2p−2 saddle points with QI=QCI=1. Recall that M and, hence,
M̃ is compact (Lemma 3.3). Then, from Morse theory (cf. [3]) we know that
χ = ∑m

i=0(−1)ici , where ci denotes the number of KKT-points with QI=i, and
where m is the dimension of the manifold (perhaps with boundary). For f |M we
have

c0 = 1 , c1 = c2 = 0 ,

and for f |M̃ is is

c0 = c2 = 2p−2 , c1 = (p − 2) 2p−2 .

This proves the formulas for the corresponding Euler characteristics. �
4. An interior point approach

Throughout this section let Assumption 3.5 (LICQ) hold as well as the following
compactness and non-degeneracy assumption.

ASSUMPTION 4.1. The set M is compact and all KKT-points for f |M and (−f )|M
are non-degenerate.

In the following we denote the relative interior of M by

M> = { x ∈ R
n| hi(x) = 0, i ∈ I, gj (x) > 0, j ∈ J } ,

and we put

G(x) =
∑
j∈J

ln gj (x)
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as well as

Mε = { x ∈ M>| G(x) � ln ε } .

The approach of the present section consists in equalizing the inequality constraint
of the approximate set Mε, i.e. we put

M̃ε = { (x, z) ∈ M> × R| G(x) = ln ε + 1
2z

2 } .

LEMMA 4.2. (cf. [4]).

(i)The set Mε converges (in the Hausdorff metric) to the set M as ε > 0 tends
to zero.

For sufficiently small ε > 0 we have:

(ii)The vectors Dhi(x), i ∈ I, DG(x), are linearly independent for all x ∈
M satisfying G(x) = ln ε .
(iii)The set Mε is homeomorphic with the set M.

Note that for sufficiently small ε > 0 the set M̃ε is a compact C2−manifold without
boundary and dim M̃ε = dim M .

By Assumptions 3.5 and 4.1 the set

S = { x ∈ M| x is KKT-point for f |M or for (−f )|M }
is finite.

LEMMA 4.3. ([2, 4]). For each x ∈ S let Ux be an (arbitrarily small) neighbor-
hood of x. Then for sufficiently small ε > 0 we have:

(i)Each critical point of f |Mε is non-degenerate, and it belongs to some Ux

with x ∈ S.
(ii)There is a one-to-one correspondence between the set S and the set of
critical points of f |Mε . In particular, if x̄ ∈ M is a KKT-point for f |M (resp.
(−f )|M ), then the corresponding critical point ȳ for f |Mε (resp. (−f )|Mε ) is
a KKT-point of f |Mε (resp. (−f )|Mε ), and the quadratic indices QI at x̄ and
ȳ coincide.

A combination of Theorem 3.7 and Lemma 4.3 immediately yields the follow-
ing result.

THEOREM 4.4. Let ε > 0 be sufficiently small. Then the number of critical points
for f |M̃ε is bounded by 2|S|.
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Hence, the number of critical points does not grow exponentially like in The-
orem 3.7 (compare also Remark 3.9). Accordingly the topological complexity of
M̃ε does not change drastically, compared to M. Let us illustrate the latter fact by
an example.

THEOREM 4.5. Let M ⊂ R
n be a polytope with non-empty interior, defined by

affine linear inequality constraints

0 � gj (x) = a�
j x − bj , j ∈ J .

Suppose that LICQ is satisfied at all points of M (Assumption 3.5). Then, for ε > 0
sufficiently small, M̃ε is homeomorphic to the n−dimensional sphere Sn.

REMARK 4.6. Note that M is homeomorphic to the n−dimensional Euclidean
ball Dn. Hence, from a topological point of view, the transition from M to M̃ε

is just “doubling” the ball Dn into the sphere Sn. Compare this result with The-
orem 3.10. Under the assumptions of the latter theorem M̃ε is just homeomorphic
with the two-dimensional sphere S2.

Proof of Theorem 4.5. Choose c ∈ R
n such that the function f (x) = c�x

has exactly one minimum and one maximum point on M. Then, for sufficiently
small ε > 0, f |M̃ε has exactly two critical points: a non-degenerate minimum and
a non-degenerate maximum point. From Morse theory (cf. [3]) we see that the
set M̃ε is built up by two n−dimensional cells, homeomorphically glued together
along their boundaries. This obviously results into a homeomorphic copy of the
n−dimensional sphere Sn. �
REMARK 4.7. The assumption of LICQ in Theorem 4.5 can be deleted. In fact,
the only technical point consists in checking that the logarithmic smoothing results
into a problem with exactly two non-degenerate critical points for f |M̃ε .

5. Final remarks

We point out that in the exact approach (cf. Section 3) as well as in the interior point
approach (cf. Section 4) one can consider gradient flows on M̃ ⊂ R

n × R
|J | and

M̃ε ⊂ R
n × R, respectively, corresponding to a given Riemannian metric on these

higher-dimensional spaces. An orthogonal projection of these flows to R
n ⊃ M

provides ascent and descent differential equations on M.
In [5] we show that this observation yields an automatic adaptation of a given

metric on R
n, such that the so-called min-max digraph becomes connected: it is

then possible to reach all local maxima and minima by integration of the ascent and
descent differential equations. The effects of an appropriate numerical integration
for these differential equations will be subject of future research.
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